
Abstract 

 

This article describes how the IncrediBuild XGE interfaces were used by Riverblade to accelerate 

PC-lint C++ code analysis tasks in order to complete the static analysis of a Visual Studio 

solution in a fraction of the time possible with conventional methods. 

 

PC-lint analyzes C++ source code, so analysis runs using it can be quite time consuming if the 

code being analyzed uses the Windows SDK header files or has significant internal 

dependencies. Riverblade’s solution is to use the Xoreax IncrediBuild XGE Interfaces Extension 

Package to allow PC-lint analysis tasks to be delegated to spare development machines on the 

network. In doing so, speed improvements of up to 17x over conventional single threaded 

analysis approaches have been observed. 
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to bottlenecks in disk and memory I/O) any further improvements in analysis time using this 

approach alone are fundamentally limited. 

 

To achieve further reductions in analysis time without waiting for the availability of faster 

processors with more cores than current designs the obvious thing to do is to utilize grid 

computing technology to distribute analysis tasks across multiple machines on the network. 

Indeed, this is something Riverblade has been planning for some time, but until recently we had 

not identified a suitable toolkit for our purposes. 

 

 

The Alternatives 

 

There are several conventional ways to speed up PC-lint analysis runs: 

 

• Buy a faster machine with more cores 

 

• Reduce include dependencies in the codebase(s) to be analyzed 

 

• Use PC-lint 9.0 precompiled and bypass header functionality to cache common include 

file definitions. 

 

Although the new PC-lint 9.0 precompiled/bypass header support shows promise (our tests 

showed it could yield a threefold reduction in analysis time on our own codebase), our 

experience suggests that it can require significant effort to configure correctly in parallel 

analysis scenarios and may (at least with PC-lint 9.00b) generate spurious analysis errors which 

are not present in a conventional PC-lint analysis. 

 

Hence all of these solutions are fundamentally limited in the gains which can be achieved, and 

can require a significant investment in time and/or capital expenditure to reap what could turn 

out to be a fairly limited benefit. 

 

 

 

 



The Solution – Visual Lint and IncrediBuild
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The results of the tests performed
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This is illustrated in the table below:

 

Description 
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The results of the tests performed using this combination are (to say the least
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to say the least) striking. Using 

desktop systems) we were able to complete a 

minutes – a seventeen-fold 

Analysis time 

kLOC 

 

Speed relative to 

single threaded 

analysis 

4 hours 25 minutes x1 

minutes x1.8 

10 
x17.5 
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Benefits 

Integrating IncrediBuild support into Visual Lint has allowed us to complete full static analysis 

runs of our own codebase in far less time than previously possible. As a result, we are now able 

to identify and correct any regressions (typically introduced during refactoring or the 

development of new features) much more quickly. 

 

Furthermore, the IncrediBuild XGE interfaces have allowed us to integrate this functionality into 

our product at a small fraction of the cost which we would have incurred had we attempted to 

implement a grid computing code analysis solution ourselves. It also provides a very clear 

visualization of the progress of analysis tasks using the IncrediBuild Build Monitor, which is of 

course integrated into the development environment alongside the Visual Lint displays 

themselves. 

 

 

 

Summary 

 

The integrated Visual Lint/IncrediBuild solution allows developers to perform what are normally 

time consuming PC-lint code analysis operations in a fraction of the time, dramatically 

increasing the effectiveness of the code analysis process. 

 

 

 

About Riverblade 

 

Riverblade are a UK based Independent Software 

Vendor and Microsoft Partner specializing in code 

analysis tools and Visual Studio integration. 

Our core product Visual Lint integrates the industry standard PC-lint C++ code analysis tool 

within the Microsoft Visual Studio and Visual C++ development environments. Since its first 

release in November 2005, Visual Lint has brought automated PC-lint code analysis to Microsoft 

Visual Studio and Visual C++ developers in a way never before seen in any mainstream code 

analysis product. Rather than spending time waiting for slow manual analysis operations to 

complete, Visual Lint allows developers to get on with what they do best - writing code. 

Analysis results are collected in the background without interrupting the developer, and 

presented in straightforward, easy to interpret displays. 

Further details can be found at http://www.riverblade.co.uk/products/visual_lint. For 

additional information on Visual Lint including technical or sales information please contact us 

at enquiries@riverblade.co.uk or visit http://www.riverblade.co.uk. 
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