
Abstract

This article describes how the IncrediBuild XGE interfaces were used by Riverblade to accelerate

PC-lint C++ code analysis tasks in order to complete the static analysis of a Visual Studio

solution in a fraction of the time possible with conventional methods.

PC-lint analyzes C++ source code, so analysis runs using it can be quite time consuming if the

code being analyzed uses the Windows SDK header files or has significant internal

dependencies. Riverblade’s solution is to use the Xoreax IncrediBuild XGE Interfaces Extension

Package to allow PC-lint analysis tasks to be delegated to spare development machines on the

network. In doing so, speed improvements of up to 17x over conventional single threaded

analysis approaches have been observed.

The Challenge

Riverblade offer Visual Studio integration and code analysis tools, o

known is Visual Lint (http://www.riverblade.co.uk/products/visual_lint

integrates the Gimpel PC-lint C++ code analysis tool directly into the Visual

environment:

Anyone who has ever used static

they can be very thorough, but

codebase than it would to compile the same code. Given the depth of analysis performed this is

a reasonable trade-off, but in some cases the time required for an analysis run can

problem – which in turn can act as a disincentive to use code

One of the original design aims of Visual Lint was to

processors to complete PC-lint

command line driven process

time when run on a dual core system

of cores in desktop processors typically being

offer Visual Studio integration and code analysis tools, of

http://www.riverblade.co.uk/products/visual_lint

int C++ code analysis tool directly into the Visual

static code analysis tools (and PC-lint in particular)

thorough, but that it can take much longer to complete a

than it would to compile the same code. Given the depth of analysis performed this is

off, but in some cases the time required for an analysis run can

act as a disincentive to use code analysis tools

One of the original design aims of Visual Lint was to be able to take advantage of multicore

lint code analysis runs significantly faster than a conventional

process. It does this very well – being typically able to halve the analysis

time when run on a dual core system, for example. However, with the evolution of the number

sors typically being a slow process (and one potentially

 which the most well

http://www.riverblade.co.uk/products/visual_lint) – a product which

int C++ code analysis tool directly into the Visual Studio development

int in particular) will know that

longer to complete a full analysis of a

than it would to compile the same code. Given the depth of analysis performed this is

off, but in some cases the time required for an analysis run can be a

tools at all.

take advantage of multicore

significantly faster than a conventional

being typically able to halve the analysis

. However, with the evolution of the number

(and one potentially also subject

to bottlenecks in disk and memory I/O) any further improvements in analysis time using this

approach alone are fundamentally limited.

To achieve further reductions in analysis time without waiting for the availability of faster

processors with more cores than current designs the obvious thing to do is to utilize grid

computing technology to distribute analysis tasks across multiple machines on the network.

Indeed, this is something Riverblade has been planning for some time, but until recently we had

not identified a suitable toolkit for our purposes.

The Alternatives

There are several conventional ways to speed up PC-lint analysis runs:

• Buy a faster machine with more cores

• Reduce include dependencies in the codebase(s) to be analyzed

• Use PC-lint 9.0 precompiled and bypass header functionality to cache common include

file definitions.

Although the new PC-lint 9.0 precompiled/bypass header support shows promise (our tests

showed it could yield a threefold reduction in analysis time on our own codebase), our

experience suggests that it can require significant effort to configure correctly in parallel

analysis scenarios and may (at least with PC-lint 9.00b) generate spurious analysis errors which

are not present in a conventional PC-lint analysis.

Hence all of these solutions are fundamentally limited in the gains which can be achieved, and

can require a significant investment in time and/or capital expenditure to reap what could turn

out to be a fairly limited benefit.

The Solution – Visual Lint and IncrediBuild

Several months ago we became aware that IncrediBuild

years ago but which we had no direct need for

short) now supported external interfaces for general purpose grid computing

Interfaces Extension Package.

to further accelerate PC-lint analysis

solution we had to investigate.

Of the available XGE interfaces (XML, Automatic Interception and

interface seemed best suited to our requirements as it allowed us to specify in detail the

properties of each task, and receive raw analysis results from completed

We found the XML interface

difficulties in uniquely identifying the output from specific tasks (solved by using the

and Output attributes of the interface in a slightly non

development build of Visual Lint which was capable of using IncrediBuild to run PC

tasks.

Visual Lint and IncrediBuild

Several months ago we became aware that IncrediBuild (a product I had encountered several

years ago but which we had no direct need for in our build process as our build times are quite

external interfaces for general purpose grid computing

. Given our long term objective to use grid computing techniques

int analysis tasks, it was obvious that this represented a potential

solution we had to investigate.

Of the available XGE interfaces (XML, Automatic Interception and Submission), the XML

interface seemed best suited to our requirements as it allowed us to specify in detail the

properties of each task, and receive raw analysis results from completed analysis

We found the XML interface to be relatively straightforward, and despite some initial

difficulties in uniquely identifying the output from specific tasks (solved by using the

attributes of the interface in a slightly non-standard way), we

development build of Visual Lint which was capable of using IncrediBuild to run PC

(a product I had encountered several

as our build times are quite

external interfaces for general purpose grid computing via the XGE

Given our long term objective to use grid computing techniques

, it was obvious that this represented a potential

Submission), the XML

interface seemed best suited to our requirements as it allowed us to specify in detail the

analysis tasks directly.

straightforward, and despite some initial

difficulties in uniquely identifying the output from specific tasks (solved by using the SourceFile

we soon had a working

development build of Visual Lint which was capable of using IncrediBuild to run PC-lint analysis

The results of the tests performed

just six agents (four dual and two quad core

complete analysis of the Visual Lint codebase in

improvement on the single threaded

This is illustrated in the table below:

Description

1 Core (2.2 GHz). Single threaded

2 Cores (aggregate speed 4.4

using 3 parallel analysis threads

16 Cores (aggregate speed 40 GHz)

As you can see from the table above, the

quite considerable.

The results of the tests performed using this combination are (to say the least

and two quad core desktop systems) we were able to

of the Visual Lint codebase in just over 15 minutes

single threaded equivalent.

This is illustrated in the table below:

Analysis time

(178 kLOC

codebase)

2.2 GHz). Single threaded conventional PC-lint analysis 4 hours 25 minutes

 GHz). Native Visual Lint analysis
2 hours 22 minutes

GHz) using XGE
15 minutes 10

seconds

As you can see from the table above, the reduction in the time taken to complete the analysis is

to say the least) striking. Using

desktop systems) we were able to complete a

minutes – a seventeen-fold

Analysis time

kLOC

Speed relative to

single threaded

analysis

4 hours 25 minutes x1

minutes x1.8

10
x17.5

reduction in the time taken to complete the analysis is

Benefits

Integrating IncrediBuild support into Visual Lint has allowed us to complete full static analysis

runs of our own codebase in far less time than previously possible. As a result, we are now able

to identify and correct any regressions (typically introduced during refactoring or the

development of new features) much more quickly.

Furthermore, the IncrediBuild XGE interfaces have allowed us to integrate this functionality into

our product at a small fraction of the cost which we would have incurred had we attempted to

implement a grid computing code analysis solution ourselves. It also provides a very clear

visualization of the progress of analysis tasks using the IncrediBuild Build Monitor, which is of

course integrated into the development environment alongside the Visual Lint displays

themselves.

Summary

The integrated Visual Lint/IncrediBuild solution allows developers to perform what are normally

time consuming PC-lint code analysis operations in a fraction of the time, dramatically

increasing the effectiveness of the code analysis process.

About Riverblade

Riverblade are a UK based Independent Software

Vendor and Microsoft Partner specializing in code

analysis tools and Visual Studio integration.

Our core product Visual Lint integrates the industry standard PC-lint C++ code analysis tool

within the Microsoft Visual Studio and Visual C++ development environments. Since its first

release in November 2005, Visual Lint has brought automated PC-lint code analysis to Microsoft

Visual Studio and Visual C++ developers in a way never before seen in any mainstream code

analysis product. Rather than spending time waiting for slow manual analysis operations to

complete, Visual Lint allows developers to get on with what they do best - writing code.

Analysis results are collected in the background without interrupting the developer, and

presented in straightforward, easy to interpret displays.

Further details can be found at http://www.riverblade.co.uk/products/visual_lint. For

additional information on Visual Lint including technical or sales information please contact us

at enquiries@riverblade.co.uk or visit http://www.riverblade.co.uk.

About the Author

Anna-Jayne Metcalfe is the founder of Riverblade Ltd, and the original

architect of the Visual Lint static code analysis product. She is an active

member of ACCU (http://www.accu.org) and the CodeProject

(http://www.codeproject.com) developer community. She has several

articles published on codeproject.com, and her article “Taming the Lint

Monster” was recently published in the ACCU member journal CVu.

Prior to founding Riverblade she worked extensively in the marine and defense sectors,

specializing in virtual instrumentation, automatic test systems and subsea acoustic navigation

products.

